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Abstract 

Introduction

Previous data had shown a high prevalence of anemia and various micronutrient defi-

ciencies (MNDs) in the Tolon and Kumbungu districts. We aimed to reassess these 

outcomes among lactating women (LW), women of reproductive age (WRA), and 

preschool children (PSC) to inform the design of a MN-fortified bouillon cubes trial, 

including the choice of micronutrients and selection of study sites; among WRA and 

PSC, we aimed to identify factors associated with anemia, MND, and inflammation, 

and to examine anemia co-occurring with MND and inflammation.

Methods

In this cross-sectional study (Nov 2020–Jan 2021), we randomly selected 7 urban 

and 7 rural clusters per district from those accessible at the time, recruited partic-

ipants through a random walk-based search, and collected and analyzed breast-

milk (LW) and venous blood (WRA and PSC). Ferritin (WRA and PSC), and retinol, 

retinol-binding protein, and zinc (PSC only) were adjusted for inflammation. Binary 

outcomes were defined using accepted cut-offs. Data analyses involved descriptive 

statistics, generalized linear mixed models (identify factors), and Rao-Scott chi-

squared test (examine co-occurrence).
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Results

Approximately 240 each of LW (average age, 30 y), WRA (30 y), and PSC (41 

months) participated. Among LW, 41% had low breastmilk B-12; 8% had low breast-

milk retinol. Among WRA, anemia was 31%; prevalences of MNDs were: iron, 45%; 

zinc, 79%; vitamin A, 1%; B-12, 12%; and folate, 12%; with 15% elevated α1‐acid gly-

coprotein (AGP) or C-reactive protein (CRP). Among PSC, anemia was 36%; prev-

alences of MNDs were: iron, 57%; zinc, 67%; vitamin A, 19%; and B-12, 19%; with 

39% elevated AGP or CRP. Improved source of drinking water was associated with 

lower odds of anemia, iron deficiency, and vitamin A deficiency in WRA; rural or Kum-

bungu residence was linked to higher odds of vitamin B-12 or vitamin A deficiency in 

PSC. Anemia co-occurred with iron deficiency and inflammation in WRA and PSC.

Conclusion

Anemia and MNDs were common in this setting, suggesting the need for targeted 

interventions.

Introduction

Anemia and micronutrient (vitamin and mineral [1]) deficiencies (MNDs) are preva-
lent, particularly in women and under-five children in many low-income settings  
[2, 3]. Globally, an estimated 30% of non-pregnant, non-lactating women of repro-
ductive age (WRA) 15–49 y and 40% of preschool children (PSC) aged 6–59 months 
had anemia in 2019 [4]. More alarming, an estimated 69% of WRA, equivalent to 
1.2 billion, were deficient in folate, iron, or zinc, while 56% of PSC, equivalent to 372 
million, were deficient in vitamin A, iron, or zinc in 2022 [5]. Anemia and MNDs have 
debilitating consequences, including increased morbidity and mortality rates, and 
reduced work capacity in WRA, and poor growth [6–8], cognitive impairment [6, 9], 
and lower school performance [10] in PSC, with long-term negative effects on educa-
tional achievement and economic potential [2].

In Ghana, an estimated 41% of WRA and 49% of PSC were anemic in 2022 [11], 
while the prevalence rates of vitamin A, vitamin B-12, folate, iodine, iron, and zinc 
deficiencies remain a matter of public interest for both target groups. In the 2017 
Ghana Micronutrient Survey [12, 13], the estimated national prevalence of specific 
MNDs was 2% for vitamin A, 59% for folate, and 20% for iron among WRA, and 13% 
for vitamin A and 30% for iron among PSC. Subsequent analysis [14] suggested that 
nearly 33% of anemia in WRA and at least 19% of anemia in PSC may be attribut-
able to iron deficiency.

While there are reliable statistics in Ghana for anemia [11] and MNDs [13] among 
WRA and PSC at the national and regional levels, the extent of these deficiencies in 
many sub-regional or local areas remains largely unknown. The Ghana Micronutri-
ent Survey [12, 13] revealed that the Tolon and Kumbungu districts in the Northern 
Region were among “pockets” in the country with higher prevalences of  anemia 
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and iron deficiency in WRA and anemia, iron deficiency, and vitamin A deficiency in PSC than elsewhere in the same 
region. Consequently, our research group suggested that these two districts might be a suitable site for a planned ran-
domized trial of micronutrient-fortified bouillon cubes for preventing anemia and MNDs in Ghana and similar settings in 
West Africa. Identifying factors associated with anemia, MNDs, and inflammation biomarkers, as well as evaluating their 
co-occurrence, might help inform strategies to improve nutrition and health outcomes in this setting.

In a pilot study in the Tolon and Kumbungu districts, we aimed to reassess the prevalence of anemia and MNDs among 
lactating women (LW), WRA, and PSC to inform the planned micronutrient-fortified bouillon intervention trial. The present 
analysis focused on the micronutrients including vitamin A, vitamin B-12, folate, iodine, iron, and zinc, which were likely to 
be of public health importance [15] in Ghana and were intended for inclusion in the micronutrient-fortified bouillon cubes 
[16]. Specifically, we aimed to assess breastmilk micronutrient concentration among LW; in WRA and PSC, we aimed 
to (a) determine the prevalence of anemia, MND, and elevated biomarkers of inflammation, (b) identify community-, 
household-, and individual-level factors associated with anemia, MNDs, and inflammation, and (c) evaluate whether ane-
mia co-occurred with MNDs or inflammation significantly more frequently than expected by chance.

Methods

Study design, setting, and participants

This was a cross-sectional study. Most people in the Tolon and Kumbungu districts were semi-subsistence farmers 
[17], and the poverty level in the area was high [18]. The local diet consisted mainly of staples, including maize, mil-
let, sorghum, cowpea, and groundnuts. Each of the district capitals, Tolon and Kumbungu, had reasonably good public 
amenities, such as treated water, electricity, mobile telephone service, a health facility, and a tarred road from Tamale, 
the regional capital. However, access to improved source of drinking water and sanitation was not universal across the 
districts [18].

Potential participants were (i) non-pregnant LW 15−49 y of age with infants 4−18 months of age, (ii) non-pregnant, 
non-lactating WRA (15−49 y), and (iii) PSC (24−59 months). Exclusion criteria were severe illness warranting hospi-
tal referral, body temperature >38 ºC or reported COVID-19 exposure, chronic severe medical condition (e.g., malig-
nancy) or congenital anomaly requiring frequent medical attention, inability to provide informed consent due to impaired 
decision-making abilities, and current participation in a clinical trial.

The study protocol was approved by the Ghana Health Service Ethics Review Committee (GHS-ERC: 012/07/20) and 
the University of California, Davis, Institutional Review Board (IRB Number 1536100−1).

Study procedures

Participant recruitment.  We obtained the list of “urban” and “rural or semi-rural” clusters [19] in the study area from 
the Ghana Statistical Service and randomly selected 7 of each per district (total 28 clusters). In the Tolon district, clusters 
were selected from those that were accessible, as a river had flooded and made some areas difficult to enter. Within each 
cluster, we aimed to recruit 6–9 participants for each target group (LW, WRA, and PSC) or 18–27 participants in total 
based on the target sample size. From 09 November 2020 to 16 January 2021, field workers identified eligible households 
and potential participants through a random walk method, which involved (i) randomly choosing a “starting point” within 
the cluster, (ii) approaching the “next nearest house” to assess household eligibility and recruit eligible participant(s), 
and (iii) continuously recruiting eligible participants from the “next nearest house” until the target number of participants 
had been recruited [20,21]. A household was defined as a group of people who recognized the same head of household, 
lived together, and shared living expenses and meals. Field workers chose a starting point within a cluster by following 
a walking route in a randomly selected direction from the center to the outskirt of the cluster where the houses could be 
easily counted, and selecting one of those houses using a random number generator [22].
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At each household approached, field workers assigned an ID number and obtained oral consent from the household 
head to determine, by using a brief questionnaire, whether the household included any potentially eligible participants. 
This questionnaire included questions about COVID-19 exposure; if the respondent had a body temperature >38 ºC or 
reported COVID-19 exposure by a household member, the interview was discontinued and household members advised 
to seek medical attention. Eligible household members were recruited after field workers explained the study procedures 
to them (LW and WRA) or their caregivers (PSC), answered any questions, and obtained informed written consent. 
Depending on the number of participants already recruited in a cluster, we prioritized recruiting individuals from house-
holds with eligible participants from two or more target groups. We recruited a participant or participants from one house-
hold per house or compound, and one participant per target group per household.

Data and biological sample collection

At recruitment, field workers used pre-tested questionnaires and electronic tablets to collect information on demographic 
and socio-economic status (household size, number of children <5 y, household members’ educational level, food security 
[Household Food Insecurity Access Scale (HFIAS) score [23]], main source of drinking water [24], and type of toilet facility 
[25]). To guide the future planned clinical trial of multiple micronutrient-fortified bouillon cube, we determined household 
consumption of bouillon over the prior 30 days through a household questionnaire based on the Fortification Assessment 
Coverage Tool (FACT) developed by the Global Alliance for Improved Nutrition [26], and estimated participants’ bouillon 
“apparent intake” through the Adult Male Equivalent method [27].

Additional individual-level information included participants’ age, education, consumption patterns (typical week’s 
servings) of selected food groups, use of micronutrient-containing supplements and micronutrient powders in the past 
30 d, and morbidity in the past 7 d. The food groups (by a food frequency questionnaire, FFQ) included fruits, vege-
tables, sweetened snacks (e.g., biscuits, candies or chocolates), salty snacks (e.g., crisps and salty crackers), and 
sugar-sweetened beverages (SSBs, e.g., soft drinks and sugar-sweetened fruit drinks). The FFQ was adapted from the 
World Health Organization STEPS (STEPwise approach to non-communicable disease risk factor surveillance) instrument 
[28]. Showcards with photos of local food items and typical servings sizes were used as a prompt during interviews. A 
serving of fruits or vegetables was defined as 80 g [28]. For SSBs, a serving was defined as 120 mL, and for salty snacks 
and sweetened snacks, each serving was defined as 20 g [29].

On the day after recruitment (or the following working day, if recruitment occurred on a Friday) we invited participants 
to a central mobile laboratory for anthropometric measurements and biological sample collection. WRA were asked to fast 
for at least 8 hours before the laboratory visit. After arrival, study staff asked about participants’ and their household mem-
bers’ exposure to COVID-19, and measured participants’ body temperature. Participants with fever or reported diarrhea, 
either currently or within the past 24 hours, were deferred with the possibility of returning after their symptoms resolved. 
For participants without these symptoms, trained anthropometrists used procedures described by the World Health Orga-
nization [30] to measure their weight to the nearest 0.05 kg (Seca 874; Seca) and height to the nearest 0.1 cm (Seca 217; 
Seca). PSC’s mid-upper arm circumference was measured to the nearest 0.1 cm (Shorr Productions).

The biological sample collection involved breastmilk from LW, and spot urine and blood from WRA and PSC. From 
the LW, the study nurse collected ~10 ml of breastmilk using the “full milk sample” method [31] (i.e., taking sample from 
the breast that was ‘more full’) and recording the time of day and time since the last breastfeeding. Before collecting the 
samples, women were asked to breastfeed their children or express breastmilk for 60 seconds from the breast that was 
sampled. Immediately following collection, breastmilk fat content was measured using the Creamatocrit (CreamatocritPlus 
Centrifuge; EKF Diagnostics) to centrifuge the milk in a microhematocrit tube to separate the aqueous and fat layers. Sub-
sequently, the length of each layer was measured to calculate the fat content as % of volume, which was then converted 
to grams per liter (g/L) using a validated regression equation [32,33]. A breastmilk aliquot was stored at <−20° C for retinol 
and vitamin B-12 analysis.
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From WRA and PSC, spot urine samples were collected, placed in a cool box, and later stored at −20°C. Trained 
phlebotomists collected venous blood (~ 6 mL) into evacuated, trace element-free, serum tubes (Sarstedt AG & Co, Num-
brecht, Germany) using standard procedures, and immediately measured hemoglobin (Hb) by Hemocue (Hemoue 301, 
Hemocue AB Angelholm, Sweden) and malaria antigenemia by a rapid diagnostic test, RDT (BioZEK, B.V., Apeldoorn, 
Netherlands). For erythrocyte folate measurement in WRA, hematocrit was measured using the GCH-24 Hematocrit cen-
trifuge (Globe Scientific, Mahwah, New Jersey, USA) and in addition, 100 µL of whole blood was aliquoted into polypropyl-
ene cryovials containing 1 mL of 1% ascorbic acid solution. The blood samples in the serum blood collection tubes were 
placed on cold packs and allowed to clot for at least 30 minutes, but not more than 8 hours, before centrifugation at 1,097 
x g (3100 RPM) for 10 min. Serum samples were aliquoted and stored at −86 °C [16] for analysis.

Phlebotomists were unable to obtain venous blood samples from 8/224 (4%) WRA and 70/241 (29%) PSC after two 
attempts and, thus, obtained finger-prick samples for Hb (g/L) and malaria assessments only. Information necessary 
to interpret biomarker values, including the time of the participant’s most recent meal, was recorded at blood draw. 
Participants received written copies and interpretation of Hb and malaria RDT results; those with low Hb (<120 g/L for 
WRA; < 110 g/L for PSC) or positive malaria RDT were referred to the nearest health center.

Laboratory analyses

Breastmilk, whole blood, and serum samples were air-freighted on dry ice for analysis. Breastmilk vitamin A (retinol, 
nmol/g fat) [34] was measured at the University of California, Davis by using high-performance liquid chromatography 
(HPLC; Roche Diagnostics, Indianapolis, USA). Breastmilk and serum vitamin B-12 (pmol/L) were measured at the USDA 
Western Human Nutrition Research Center by using IMMULITE 1000 solid-phase automated competitive binding chemi-
luminescent enzyme immunoassay (Siemens Healthcare Diagnostics, Duluth, GA, USA) [35]. Serum ferritin (SF, μg/L), 
soluble transferrin receptor (sTfR, mg/L), retinol-binding protein (RBP, µmol/L), alpha-1-acid glycoprotein (AGP, g/L), and 
C-reactive protein (CRP, mg/L) were measured at the VitMin Laboratory (Willsteadt, Germany) using a sandwich ELISA 
technique [36]. Additional analyses included serum retinol (SR, µmol/L) [37], by HPLC at the University of California, 
Davis; serum zinc (µg/dL) [38], by inductively coupled plasma optical emission spectrometry (ICP-OES) at the University 
of California, San Francisco MLK Cores Research Facility; whole blood and serum folate (nmol/L) [39], by the microbio-
logical method at the Centers for Disease Control and Prevention; and urinary iodine concentration (UIC, µg/L) by modifi-
cation of the Sandell-Kolthoff reaction [40] at the University of Ghana. All the participating laboratory analyses had quality 
control procedures for monitoring the validity of the tests, including appropriate standard reference materials and quality 
control standards, which were analyzed with all sample runs.

Outcome variables

Among LW, the continuous outcome measures were breast milk retinol and vitamin B-12 concentrations. We defined low 
breast milk retinol as <28 nmol/g fat [41]. Currently, there is no universally accepted cut-off for low vitamin B-12 in breast 
milk [42]. A cut-off of <362 pmol/L exists but is not widely used due to potential overestimations of inadequacy, as it was 
developed using older laboratory methods that may not have measured breast milk vitamin B-12 accurately, and was 
based on a relatively small number of samples [43, 44]. Therefore, we defined low breast milk B-12 concentration using 
two cut-offs, namely <362 pmol/L [43, 44] and <221 pmol/L often used for serum/plasma vitamin B-12 [45].

For WRA and PSC, the continuous outcome variables were blood Hb concentration, indices of iron status (SF, sTfR, 
and body iron stores (BIS, estimated from SF and sTfR concentrations [46])), iodine status (UIC), vitamin status (serum 
B-12, erythrocyte folate, serum folate, serum retinol, and RBP), zinc status (serum zinc), and biomarkers of inflammation 
(AGP and CRP). We used the correction approach described by the Biomarkers Reflecting the Inflammation and Nutri-
tional Determinants of Anemia (BRINDA) project [47] to adjust SF, retinol (PSC only), RBP (PSC), and zinc (PSC) concen-
trations for inflammation (AGP and/or CRP) before any analysis.
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The binary outcomes were anemia or low Hb (including mild, moderate, and severe anemia) [48] and those defining 
iron deficiency (low SF [49], elevated sTfR [36], and low BIS [46]), iron deficiency anemia (low Hb with low SF) [50], zinc 
deficiency (low serum zinc) [51], vitamin A deficiency (low serum retinol [52] and low RBP [53]), vitamin B-12 deficiency 
(low serum B-12 [45]), folate deficiency (“insufficient” [54, 55] or low RBC folate [55, 56] and low serum folate [55, 56]), 
elevated AGP [57], and elevated CRP [57]. The cut-offs used for the binary outcomes are shown in S1 Table.

Potential factors associated with anemia, MNDs, and elevated biomarkers of inflammation among WRA and PSC

Potential independent variables for anemia, ID (by ferritin), zinc deficiency, vitamin A deficiency (by serum retinol), B-12 
deficiency, folate deficiency (by RBC folate in WRA only) and inflammation (elevated AGP or CRP) among WRA (7 out-
comes) and PSC (6 outcomes) were derived from participants’ background characteristics, including household-level vari-
ables (such as demographic characteristics; household head’s level of education; asset index; food security and access 
scale score; source of drinking water; type of toilet facility; and bouillon cubes consumption) and individual-level variables 
(such as age; marital status (WRA only); educational level or level in school; employment status; typical week’s servings 
of fruits, vegetables, sweets, salty snacks, and sugar sweetened beverages consumed; micronutrient supplements con-
sumption in the past 30 days; high-dose vitamin A capsule consumption; diarrhea and fever symptoms in the past 7 days; 
and anthropometric status) (S2 Table).

Sample size and data analysis

The target sample size (n = 250) for each target group was based on estimating a 50% prevalence (most conservative 
estimate) of any MND with a precision of ±7 percentage points, and accounting for 20% loss in sample size due to blood 
collection failure. Participants without venous blood samples were excluded from analyses involving biomarkers that 
required serum samples. No imputation method was applied for missing biomarker data because the missingness was not 
at random but was primarily due to technical challenges in obtaining venous samples. We published our statistical analy-
sis plan (https://osf.io/t3zrn/) before data analysis (R version 4.1.1, R Core Team, Vienna, Austria).

We summarized continuous variables as mean ± SD if normally distributed or median (interquartile range, IQR) if not 
normally distributed, and categorical variables as frequency and percentages (%). To identify factors associated with 
anemia, deficiencies of iron (by low SF), zinc, vitamin A, B-12, and folate, and elevated biomarkers of inflammation among 
WRA and PSC, we first assessed the potential independent variables for associations with each outcome in bivariate 
models (S3 Table). All potential independent variables that showed a significant association with the outcome (P < 0.05) in 
the bivariate analyses were included in multivariable generalized linear mixed models (GLMMs). These models also incor-
porated “district” (Kumbungu: yes/no)” and “setting” (urban community: yes/no) as fixed effects to account for the varia-
tions introduced by the cluster selection process, while controlling for the random effects associated with each cluster. We 
controlled for “time since last meal or drink other than water”, “time of day blood was collected”, “time of blood centrifuga-
tion”, and “level of hemolysis in the serum sample” in the zinc deficiency models [58], and child age in all the child models. 
To address potential multicollinearity, the GLMMs analyzed each outcome variable individually, incorporating only relevant 
community, household, and individual characteristics, and excluding other outcome variables from the model.

Finally, we compared the observed versus expected prevalence of anemia co-occurring with MND or inflammation by 
using the Rao-Scott chi-squared test of independence. The expected prevalences, assuming independence between 
anemia and MND/inflammation, were calculated as the product of the prevalence of anemia and the prevalence of MND 
or inflammation.

Results

The background characteristics of the study participants are summarized in Table 1. Of note, 68% of households had 
participants from 2 or more target groups. Among the households across all groups, the median household size was 11 

https://osf.io/t3zrn/
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Table 1.  Background characteristics of participants1. 

Background characteristics LW
(n = 243)

WRA
(n = 224)

PSC
(n = 241)

Household-level characteristics

Household size 11 (9, 15)2 11 (8, 15) 11 (9, 15)

Number of children under 5 y in household 1 (1, 2) 1 (1, 2) 1 (1, 2)

Highest formal educational level in household

None 59 (25.8)3 50 (22.4) 67 (28.0)

Primary 36 (15.7) 30 (13.5) 32 (13.4)

Secondary 97 (42.4) 108 (48.4) 101 (42.3)

Higher than secondary 37 (16.2) 35 (15.7) 39 (16.3)

Household Food Insecurity Access Scale score4 5 (4, 10) 5 (3, 10) 5 (3, 9)

Moderate or Severe Food Insecurity4 181 (79.0) 163 (73.1) 184 (77.0)

Source of drinking water

Unimproved5 103 (45.0) 103 (46.2) 105 (43.9)

Improved6 126 (55.0) 120 (53.8) 134 (56.1)

Toilet facility

Unimproved7 158 (69.0) 154 (69.1) 167 (69.9)

Improved8 71 (31.0) 69 (30.9) 72 (30.1)

Participant-level characteristics

Age (women, y; children, months) 29.5 ± 6.389 29.6 ± 9.1 41.3 ± 11.4

Women’s educational level/Child’s level in school

None 165 (72.1) 154 (69.4) 151 (63.2)

Preschool 3 (1.3) 3 (1.4) 60 (25.1)

Primary 24 (10.5) 22 (9.9) 28 (11.7)

Secondary 37 (16.2) 43 (19.4) 0 (0.0)

Typical week’s servings of fruits 2 (0, 3) 2 (1, 3) 2 (0, 2)

Typical week’s servings of vegetable 14 (8, 24) 14 (10, 24) 5 (2.5, 12)

Typical week’s servings of sweets 10 0 (0, 2) 0 (0, 2) 2 (1, 4)

Typical week’s servings of salty snack11 2 (0, 3) 2 (0, 3) 0.5 (0, 2)

Typical week’s servings of sugar sweetened beverages12 0 (0, 3) 1 (0, 3) 0 (0, 3)

Consumed micronutrient supplement in past 30 d13 13 (5.7) 19 (8.8) 20 (8.5)

Consumed micronutrient powder in past 30 d14 2 (0.9) 0 (0.0) 3 (1.3)

Bouillon intake/d via AME method15, g 2.1 (1.5, 3.1) 1.8 (1.2, 2.5) 0.9 (0.6, 1.3)

Had malaria treatment in the past 4 wk 11 (4.8) 18 (8.0) 20 (8.5)

Had ≥ 3 loose stools in 24 h in the past 7 days 10 (4.4) 4 (1.8) 15 (6.3)

Had fever in the last 7 days 65 (28.4) 64 (28.6) 78 (32.6)

Mid-Upper Arm Circumference, cm 14.8 ± 1.1

Height-for-age z -score (HAZ) −1.3 ± 1.5

Weight-for-height z-score (WHZ) −0.5 ± 0.6

Body Mass Index, kgm-2 22.5 ± 4.3 22.4 ± 3.9

Underweight (BMI < 18.5 kg/m2) 12 (5.1) 21 (9.4)

(Continued)
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persons, about 26% consisted of members none of whom had any formal education, about 77% reportedly experienced 
moderate or severe food insecurity, about 45% primarily used an unimproved source of drinking water, and 69% primarily 
relied on an unimproved toilet facility.

At the individual level, the LW and WRA had nearly the same average characteristics (e.g., average age of about 30 y; 
about 70% with no formal education; relatively low fruit and vegetable intakes in a typical week, etc.), except for the per-
centages who had ≥ 3 loose stools (LW, 4.4%; WRA, 1.8%) in 24 h in the past 7 days. The mean body mass index of the 
WRA was 22 kgm-2. Among PSC, the average age was 41 months, most (63%) were not in preschool or primary school, 
up to 9% (20/241) reportedly consumed a micronutrient supplement or micronutrient powder (3/241) at least once during 
the past 30 d, and the median number of servings in a typical week was 2 for fruits and 5 for vegetables. Furthermore, 
about 9% were reportedly treated for malaria in the past 4 wk, while 6% reportedly had diarrhea and 33% reportedly had 
fever in the past 7 d. The anthropometric assessment showed that more than 31% were stunted, and nearly 5% were 
wasted.

Table 2 shows the median (Q1, Q3) concentrations of breast milk retinol (61.2 (45.4, 81.9) nmol/g fat) and vitamin B-12 
(240 (191, 347) pmol/L) among the LW. At least 8% had low breastmilk vitamin A (retinol <28 nmol/g fat); the prevalence 
of low breastmilk B-12 was 77% when using the cut-off value of <362 pmol/L, and 41% when applying the same cut-off 
(<221 pmol/L) usually used to define low serum or plasma B-12.

Background characteristics LW
(n = 243)

WRA
(n = 224)

PSC
(n = 241)

Stunted (HAZ < −2 SD) 73 (31.5)

Wasted (WHZ < −2 SD) 11 (4.7)

Abbreviations: AME, Adult Male Equivalent; HFIAS, Household Food Insecurity Access Scale; LW, lactating women; MNP, micronutrient powder; PSC, 
Pre-school children (2–5 y); WRA, women of reproductive age (15–49 y)

1 Participants from different target groups could be recruited from the same household (and therefore some households are represented in multiple 
columns), but households were not required to have participants from different target groups.

2 All such values are median (interquartile range).

3 All such values are frequency (%).

4 HFIAS score is a continuous measure of the degree of food insecurity based on a set of questions that encompass three domains of food insecurity: 
(i) anxiety and uncertainty about the household food supply, (ii) insufficient quality, and (iii) insufficient food intake and its physical consequences [23]. 
Higher values are indicative of higher household food insecurity.

5 Unimproved sources of drinking water include unprotected dug well, unprotected spring, and surface water [24].

6 Improved sources of drinking water include: piped water (into dwelling, compound, yard or plot, public tap/standpipe), tube well/borehole, protected 
dug well, protected spring, rainwater collection, and packaged or delivered water [24].

7 Unimproved toilet facility disposes of feces in fields, forests, bushes, open water bodies of water, beaches or other open spaces, or with solid waste, a 
practice known as ‘open defecation’ [25].

8 Improved toilet facility (hygienically separates human excreta from human contact) include flush or pour flush to piped sewer systems, septic tanks or 
pit latrines, ventilated improved pit latrines, pit latrines with slabs and composting toilets [25].

9 All such values are Mean ± SD.

10 Sweet servings include sweet snacks such as biscuits, candies or chocolates.

11 Salty servings include salty snacks like crisps and salty crackers.

12 Sugar sweet beverage include sweet beverages sweetened with sugar, such as soft drinks and sugar-sweetened fruit drinks.

13 Any vitamin or mineral supplements not including micronutrient powder mixed with food.

14 Micronutrient powder containing 15 micronutrients per 1 g sachet (https://supply.unicef.org/s0000225.html).

15 The Adult Male Equivalent method was applied to estimate “apparent intake” of bouillon per day [27].

https://doi.org/10.1371/journal.pone.0317647.t001

Table 1.  (Continued)

https://supply.unicef.org/s0000225.html
https://doi.org/10.1371/journal.pone.0317647.t001
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The continuous blood and biochemical outcomes among the WRA and PSC are in Table 3. Among WRA, mean ± SD 
Hb concentration was 123 ± 15 g/L. For iron status, the mean ± SD SF concentration (after adjusting for inflammation) was 
21.7 ± 19.3 µg/L, and that for sTfR was 9.6 ± 6.3 mg/L, resulting in BIS of 0.6 ± 4.6 mg/kg. Median UIC was 94 µg/L, indi-
cating “insufficient” iodine intake of the population according to WHO guidelines [40]. Among the PSC, mean ± SD Hb was 

Table 2.  Breastmilk vitamin A and vitamin B-12 among lactating women. 

Lactating women (n = 231) 1

Vitamin A (retinol) concentration, nmol/g fat 61.2 (45.4, 81.9)

Vitamin B-12 concentration, pmol/L 240 (191, 347)

Low retinol concentration (< 28 nmol/g fat) [41] 13/165(8)

Low B-12 concentration (<362 pmol/L2 179/231 (77)

Low B-12 concentration (< 221 pmol/L)2 95/231 (41)

1 Values are median (interquartile range) or n/total n (%).

2 We defined low breast milk B-12 concentration using two cut-offs, namely <362 pmol/L [43, 44] and <221 pmol/L often used for serum/plasma vitamin 
B-12 [45], as there is no universally accepted cut-off for low vitamin B-12 in breast milk [42] and the existing cut-off of <362 pmol/L is not widely used due 
to potential overestimation of inadequacy, since it was developed using older laboratory methods that may not have measured breast milk vitamin B-12 
accurately and was based on a relatively small number of samples [43, 44].

https://doi.org/10.1371/journal.pone.0317647.t002

Table 3.  Continuous blood and biochemical outcomes among the women of reproductive age and preschool children1. 

Variable and concentration WRA
(n = 224) 2

PSC
(n = 241)2

Hemoglobin, g/L 123 ± 15 [220] 111 ± 15 [236]

Iron status

Serum ferritin, μg/L 21.7 ± 19.3 [216]3 15.6 ± 16.8 [166]3

Soluble transferrin receptor, mg/L 9.6 ± 6.3 [216] 13.5 ± 7.8 [166]

Body iron stores, mg/kg 0.6 ± 4.6 [216]3 −2.3 ± 5.1 [166]3

Iodine status

Urinary iodine concentration, µg/L 94 (59, 150) [220] 105 (59, 182) [232]

Vitamin status

Serum B-12, pmol/L 432 ± 224 [209] 384 ± 196 [141]

Erythrocyte folate, nmol/L 502 ± 216 [208]

Serum folate, nmol/L 13.8 ± 5.7 [213]

Serum retinol, µmol/L 1.4 ± 0.4 [202] 0.9 ± 0.3 [147]4

Retinol binding protein, µmol/L 1.2 ± 0.4 [216] 0.7 ± 0.2 [166]4

Zinc status

Serum zinc, µg/dL 62.7 ± 9.7 [219] 61.1 ± 8.9 [166]4

Biomarkers of inflammation

alpha-1-acid glycoprotein, g/L 0.7 ± 0.2 [216] 0.9 ± 0.3 [166]

C-reactive protein, mg/L 2.5 ± 7.5 [216] 3.1 ± 7.4 [166]

Abbreviations: PSC, Pre-school children (2–5 y); WRA, women of reproductive age (15–49 y)

1 Participants from different target groups could be recruited from the same household. We missed venous blood samples from some (29%) of the PSC 
because of the difficulty of drawing blood from those children.

2 Values are Mean ± SD [n] or Median (Q1, Q3) [n]

3 After adjusting serum ferritin values for inflammation [47].

4 Inflammation adjusted [47].

https://doi.org/10.1371/journal.pone.0317647.t003

https://doi.org/10.1371/journal.pone.0317647.t002
https://doi.org/10.1371/journal.pone.0317647.t003
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111 ± 15 g/L; regarding iron status, the mean ± SD SF was 15.6 ± 16.8 µg/L, while that of sTfR was 13.5 ± 7.8 mg/L, resulting 
in BIS of −2.3 ± 5.1 mg/kg. The median UIC (105 µg/L) indicated “adequate” iodine intake of the population [40].

Table 4 shows the prevalence of anemia, micronutrient deficiency, and elevated biomarkers of inflammation among the 
WRA and PSC. For WRA, anemia prevalence was 31%, comprising 15% mild, 15% moderate, and 1% severe anemia; 
iron deficiency prevalence was 45% by SF level, 38% by sTfR, 37% by BIS, and 56% when combining all three indicators; 
and 19% had IDA based on SF. The prevalence of the other MNDs included < 1% for vitamin A deficiency, 12% for vitamin 
B-12, 2–12% for folate based on low erythrocyte or serum folate, and 79% for zinc. At least 11% had elevated AGP, 11% 
had elevated CRP, and 15% had elevated AGP or CRP.

Table 4.  Anemia, micronutrient deficiency, and elevated biomarkers of inflammation among the women of reproductive age and preschool 
children1. 

Variable WRA
(n = 224)2

PSC
(n = 241)2

Anemia [48]

Any anemia (WRA: Hb < 120 g/L; PSC: Hb < 110 g/L) 68/220 (31) 85/236 (36)

Mild anemia (WRA: Hb 110–119 g/L; PSC: Hb 100–109 g/L) 33/220 (15) 45/236 (19)

Moderate anemia (WRA: Hb 80–109 g/L; PSC: Hb 70–99 g/L) 33/220 (15) 38/236 (16)

Severe anemia (WRA: Hb < 80 g/L; PSC: Hb < 70g/L) 2/220 (1) 5/236 (2)

ID

ID by SF (WRA: < 15 µg/L; PSC: < 12 µg/L) [49] 97/216 (45)3 95/166 (57)3

ID by sTfR (WRA: > 8.3 mg/L; PSC: > 8.3 mg/L) [36] 82/216 (38) 118/166 (71)

ID by BIS (WRA: < 0 mg/kg; PSC: < 0 mg/kg) [46] 80/216 (37)3 101/166 (61)3

Any ID (WRA: SF < 15 µg/L or sTfR > 8.3 mg/L; PSC: SF < 12 µg/L or sTfR > 8.3 mg/L 121/216 (56) 134/166 (81)

IDA by SF (WRA: SF < 15 µg/L and Hb < 120 g/L; PSC: SF < 12 µg/L and Hb < 110 g/L) [50] 40/212(19)3 41/163 (25)3

Vitamin A deficiency

Vitamin A deficiency (SR < 0.70 µmol/L) [52] 2/202 (1) 43/147 (29)4

Vitamin A deficiency (WRA: RBP < 0.52 µmol/L; PSC: RBP < 0.54 µmol/L) [53] 0/216 (0) 32/166 (19)4

Vitamin B-12 deficiency (serum B-12 < 221 pmol/L) [45] 25/209 (12) 27/141 (19)

Folate deficiency

“Insufficient” RBC folate (< 748 nmol/L) [54, 55] 190/208 (91)

Low RBC folate (< 305 nmol/L) [55, 56] 24/208 (12) –

Low serum folate (serum folate < 7 nmol/L) [55, 56] 5/213 (2) –

Zinc deficiency [51] 173/219 (79) 111/166 (67)4

Elevated biomarkers of inflammation

AGP (>1.0 g/L) [57] 24/216 (11) 61/166 (37)

CRP (>5 mg/L) [57] 24/216 (11) 28/166 (17)

AGP (>1.0 g/L) or CRP (>5 mg/L) 32/216(15) 65/166(39)

Abbreviations: AGP, alpha-1-acid glycoprotein; BIS, body iron stores; CRP, C-Reactive Protein; Hb, Hemoglobin; ID, iron; PSC, Pre-school children (2–5 
y); WRA, women of reproductive age (15–49 y)

deficiency; IDA, iron deficiency anemia; PSC, Pre-school children; RBP, retinol binding protein; SF, serum ferritin; SR, serum retinol; sTfR, soluble trans-
ferrin receptor; WRA, women of reproductive age

1 Participants from different target groups could be recruited from the same household. We missed venous blood samples from some (29%) of the PSC 
because of the difficulty of drawing blood from those children.

2 Values are n/total n (%)

3 After adjusting ferritin values for inflammation [47].

4 Inflammation adjusted [47].

https://doi.org/10.1371/journal.pone.0317647.t004

https://doi.org/10.1371/journal.pone.0317647.t004
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For PSC, anemia prevalence was 36% comprising 19% mild, 16% moderate, and 2% severe anemia; the prevalence of 
iron deficiency was 57% by SF, 71% by sTfR, 61% by BIS, and 81% when combining all three biomarkers; and 25% had 
IDA by SF. The prevalence of the other MNDs included 67% for zinc, 19−29% for vitamin A based on low serum retinol or 
RBP, and 19% for vitamin B-12. At least 37% had elevated AGP, 17% had elevated CRP, and 39% had elevated AGP or 
CRP.

Results of the bivariate analyses are in S3 Table. The GLMMs results (Table 5) showed that among WRA, the inde-
pendent variable most frequently associated with anemia and micronutrient deficiency (≥2 associations at P < 0.05) was 
improved source of drinking water (associated with anemia, iron deficiency, and vitamin A deficiency). Specifically, living in 
households with an improved source of drinking water was associated with a 59% reduction in the odds of having ane-
mia (Adjusted odd ratio, AOR: 0.41; 95% CI: 0.19, 0.87), 52% reduction in the odds of having ID (AOR: 0.48 (0.24, 0.97), 
and 64% reduction in the odds of having vitamin A deficiency (AOR: 0.36 (0.14, 0.90). Independent variables significantly 
associated with greater odds of micronutrient deficiency (P < 0.05) included living in Kumbungu district for ID [AOR: 2.11 
(1.10, 4.04)], food insecurity (higher HFIAS score) for ID [1.09 (1.01, 1.17)], and greater typical week’s servings of sugar 
sweetened beverages (SSBs) for vitamin A deficiency [1.19 (1.06, 1.35)]. None of the independent variables was inde-
pendently associated with elevated biomarkers of inflammation at P < 0.05.

Among PSC, independent variables most frequently associated with anemia and micronutrient deficiency (≥2 associa-
tions at P < 0.05) were living in rural community, living in the Kumbungu district, height-for-age z-score (HAZ), and reported 
typical week’s servings of fruits. Living in a rural community was associated with lower odds of anemia [AOR: 0.35 (0.19, 
0.64) and ID [AOR: 0.42 (0.18, 0.99)], but higher odds of vitamin B-12 deficiency [AOR: 4.07 (1.43, 11.53)]. Living in the 
Kumbungu district was associated with lower odds of zinc deficiency [0.48 (0.23, 0.99)], but higher odds of vitamin A 
deficiency [4.40 (1.60, 12.13)]. Higher HAZ was associated with lower odds of anemia [0.74 (0.60, 0.92)] and vitamin B-12 
[0.62 (0.4, 0.95)] deficiency. Higher reported number of typical week’s servings of fruits was associated with lower odds 
of anemia: [0.74 (0.60, 0.92)] and vitamin A [0.74 (0.56, 0.99)] deficiency. Other factors significantly associated (P < 0.05) 
with lower odds of anemia or a single micronutrient deficiency included improved sanitation for zinc deficiency [0.35 (0.15, 
0.79)], higher age for anemia [0.95 (0.93, 0.98)], and being female for ID [0.38 (0.18, 0.79)]. Factors significantly associ-
ated with higher odds of a single micronutrient deficiency included higher reported number of typical week’s salty snacks 
servings for zinc deficiency, and reported fever in the last 7 days for vitamin A deficiency. Only reported fever in the last 7 
days [AOR: 2.73 (1.28, 5.82)] and reported malaria treatment in the last 4 wk [AOR: 3.81 (1.03, 14.05)) were associated 
with elevated biomarkers of inflammation at P < 0.05.

Table 6 presents the observed and expected prevalence of co-occurring anemia and MND or inflammation. Among 
the WRA, the observed prevalence was significantly greater than the prevalence expected by chance alone for anemia 
co-occurring with ID by SF (19% vs 14%; P = 0.002), any ID (23% vs 17%; P = 0.001), vitamin A deficiency (1% vs 0.3%; 
P = 0.028), and elevated CRP (5% vs. 3%; P = 0.023). Anemia was not associated with the deficiencies of zinc, B-12, 
folate, elevated AGP or any inflammation.

Among the PSC, the observed prevalence was significantly greater than the prevalence expected by chance alone for 
anemia co-occurring with ID by SF (25% vs 20%; P = 0.006), any iron deficiency (33% vs 28%; P = 0.001), elevated AGP 
(17% vs. 13%; P = 0.017), and any inflammation (18% vs. 14%; P = 0.042). Anemia was not associated with the deficien-
cies of zinc, vitamin A, B-12, or elevated CRP.

Discussion

We found that among LW in this setting, the prevalence of low breastmilk vitamin A was low compared with the prevalence 
of low breastmilk vitamin B-12. Among non-lactating WRA, vitamin A deficiency was low, but anemia and deficiencies of 
iron, zinc, vitamin B-12, and folate were high, along with high prevalence of elevated biomarkers of inflammation. Living 
in a household with an improved source of drinking water was associated with lower odds of anemia, iron deficiency, and 
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Table 5.  Adjusted odds ratios (95% CI) for factors associated with anemia, micronutrient deficiency, and inflammation1. 

Predictors Anemia2 Iron deficiency 
by ferritin3

Zinc 
deficiency4

Vitamin A 
deficiency5

B-12 
deficiency6

Folate 
deficiency7

Inflamma-
tion8

WRA n = 219 n = 215 n = 217 n = 199 n = 206 n = 207 n = 212

Improved source of 
drinking water

0.41* (0.19, 
0.87)

0.48* (0.24, 
0.97)

0.36* (0.14, 
0.90)

Living in rural 
community

1.08 (0.55, 
2.11)

0.43* (0.23, 
0.82)

1.97 (0.76, 
5.13)

1.44 (0.62, 
3.32)

2.18 (0.76, 
6.28)

0.74 (0.30, 
1.79)

1.27 (0.39, 
4.12)

Living in the Kum-
bungu district

1.45 (0.72, 
2.91)

2.11* (1.10, 
4.04)

0.40 (0.15, 
1.09)

1.72 (0.74, 
3.98)

0.72 (0.25, 
2.04)

0.69 (0.27, 
1.76)

0.80 (0.26, 
2.49)

HFIAS9 1.09* (1.01, 
1.17)

1.08 (0.96, 
1.22)

Number of children 
under 5 y in Hh

0.69* (0.51, 
0.94)

0.66§ (0.41, 
1.08)

0.91 (0.82, 
1.01)§

Hh maximum educ. 
level = Primary

0.77 (0.25, 
2.4)

4.02§ (0.86, 
18.73)

Hh maximum educ. 
level = Secondary

1.65 (0.7, 
3.90)

1.20 (0.28, 
5.10)

Hh maximum educ. 
level > secondary

0.11* (0.01, 
0.93)

0.34 (0.04, 
2.63)

Woman’s educ. 
level = Primary

2.44 (0.57, 
10.5)

Woman’s educ. 
level = Secondary

2.86 (0.59, 
13.8)

Being married 0.52 (0.19, 
1.43)

Apparent bouillon 
consumption, g/wk9

0.74* (0.56, 
0.98)

Received vitamin A 
after most recent birth

5.05 (0.65, 
39.1)

Typical week’s serv-
ings of SSB9

1.19* (1.06, 
1.35)

Employment 
status = Home

0.91 (0.25, 
3.32)

Employment 
status = Student

2.22 (0.51, 
9.74)

Typical week’s serv-
ings of vegetables9

1.00 (0.94, 
1.06)

PSC 2–5 y10 n = 225 n = 164 n = 162 n = 143 n = 137 n = 165

Living in rural 
community

0.35‡ (0.19, 
0.64)

0.42* (0.18, 
0.99)

1.51 (0.7, 
3.28)

0.56 (0.21, 
1.49)

4.07† (1.43, 
11.53)

0.73 (0.37, 
1.47)

Living in the Kum-
bungu district

1.39 (0.77, 
2.5)

2.17§ (0.91, 
5.15)

0.48* (0.23, 
0.99)

4.40* (1.60, 
12.13)

1.63 (0.64, 
4.18)

0.79 (0.39, 
1.59)

Height-for-age 
z-score9

0.74† (0.60, 
0.92)

0.62* (0.4, 
0.95)

Typical week’s serv-
ings of fruits 9

0.74† (0.60, 
0.92)

0.74* (0.56, 
0.99)

Improved sanitation 0.35* (0.15, 
0.79)

Caregiver’s educ. 
level = Preschool

0.26§ (0.06, 
1.03)

Caregiver’s educ. 
level = Primary

0.38 (0.04, 
3.59)

(Continued)
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vitamin A deficiency. Living in the Kumbungu district, food insecurity, and higher consumption of SSBs were significantly 
associated with higher odds of MNDs, including ID and vitamin A deficiency. Anemia was associated with deficiencies of 
iron and vitamin A, as well as elevated CRP levels, but was not associated with deficiencies of zinc, B-12, and folate, nor 
with elevated AGP levels.

Among the PSC, the prevalence of anemia and deficiencies of iron, zinc, vitamin A, and vitamin B-12 were high, along 
with a high prevalence of elevated biomarkers of inflammation. Living in a rural area or the Kumbungu district was linked 
to mixed outcomes; rural residence was linked to lower odds of anemia and iron deficiency but higher odds of vitamin 
B-12 deficiency, while Kumbungu residence was linked to lower odds of zinc deficiency but higher odds of vitamin A defi-
ciency. Higher HAZ and higher fruit consumption were consistently associated with lower odds of anemia and vitamin A or 
vitamin B-12 deficiency. Anemia co-occurred with iron deficiency and elevated AGP, but not with the other outcomes.

This study had several strengths: we determined outcomes of public health importance in a part of Ghana often con-
sidered as a “hotspot” of poor maternal and child nutrition. The results presented are not typically available in the Ghana 
Demographic and Health Survey or the Multiple Indicator Cluster Survey reports, and they offer a new understanding 
of factors associated with anemia and MNDs among the target groups in the two districts. We used robust statistical 
approaches, including GLMMs controlling for the random effect of cluster. Giving priority to recruiting multiple target group 
members from the same household offered several advantages, including providing a broader picture of micronutrient 

Predictors Anemia2 Iron deficiency 
by ferritin3

Zinc 
deficiency4

Vitamin A 
deficiency5

B-12 
deficiency6

Folate 
deficiency7

Inflamma-
tion8

Age, y9 0.95‡ (0.93, 
0.98)

0.98 (0.95, 
1.01)

0.97§ (0.93, 
1.00)

1.01 (0.97, 
1.05)

0.99 (0.93, 
1.04)

0.97§ (0.94, 
1.00)

Child sex = Female 0.38* (0.18, 
0.79)

Typical week’s serv-
ings of salty snack9

1.39* (1.05, 
1.83)

Had fever in the last 
7 days

3.17* (1.27, 
7.91)

2.73* (1.28, 
5.82)

Had malaria treat-
ment in last 4 wk

3.81* (1.03, 
14.05)

Abbreviations: AGP, alpha-1-acid glycoprotein; CRP, C-reactive protein; HFIAS, Household Food Insecurity and Access Score; Hh, Household head; 
IDA, iron deficiency anemia; SSB, sugar-sweetened beverage; WRA, women of reproductive age.

1 Participants from different target groups could be recruited from the same household. Estimates are odds ratios and represent the relative change in 
the expected odds of the outcome associated with a one-unit change in the independent variable, by generalized linear mixed-model. Only predictors 
significantly associated with each outcome at 0.05 level of significance in bivariate analyses were included in the multivariable models presented here. 
§ p < 0.1, * p < 0.05, † p < 0.01, ‡ p < 0.001.

2 Anemia was defined as Hemoglobin (Hb) < 120 g/L in WRA (n = 219) and Hb < 110 g/L in children 2–5 y of age (n = 225).

3 ID by ferritin was defined as the presence of ferritin (SF) < 15 µg/L in WRA (n = 215) and SF < 12 µg/L in children 2–5 y of age (n = 164). SF concentra-
tion was adjusted for inflammation as described by the World Health Organization [49].

4 Zinc deficiency was defined as serum zinc < 70 µg/dL when fasting or < 66 µg/dL when non-fasting in WRA (n = 217) and serum zinc < 65 µg/dL in chil-
dren 2–5 y of age (n = 162). Serum zinc was adjusted for inflammation.

5 Vitamin A deficiency was defined as serum retinol < 1.05 µmol/L in WRA (n = 199) and < 0.70 µmol/L in children 2–5 y of age (n = 143). Serum retinol 
was adjusted for inflammation in children.

6 Vitamin B-12 deficiency was defined as serum vitamin B-12 concentration < 221 pmol/L in WRA (n = 206) and children 2–5 y of age (n = 137).

7 Folate deficiency was defined as RBC folate < 305 nmol/L in WRA (n = 207).

8 Inflammation was defined as CRP > 5 mg/L or AGP > 1.0 g/L [57] in WRA (n = 212) and children 2–5 y of age (n = 165).

9 Variables were considered as continuous variables.

10 We missed venous blood samples from some (29%) of the PSC because of the difficulty of drawing the blood from those children.

https://doi.org/10.1371/journal.pone.0317647.t005

Table 5.  (Continued)

https://doi.org/10.1371/journal.pone.0317647.t005
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status across multiple physiological groups, reducing the variability in outcomes caused by shared household factors 
(e.g., socio-economic status and dietary intake) thereby saving costs, and improving the efficiency of data collection. 
A weakness of the study was the selection of clusters from only the parts of the Tolon district easily accessible at the 
time; we also missed venous blood samples from some of the PSC (29%) because of the difficulty of drawing the blood. 
It is unlikely, however, that these would limit the generalizability of our results across the districts, which were generally 
homogenous in terms of geographical characteristics, economic status, and dietary practices [59,60], and the flooding 
that made some areas in the Tolon district difficult to access was short-lived. Given that the associations between living 
in a rural community and micronutrient deficiency were only significant for some outcomes (i.e., iron deficiency in WRA 
and PSD, anemia in PSC only, and vitamin B-12 deficiency in PSC only), the exclusion of some rural clusters in the Tolon 
district may have introduced limited bias; however, any such bias is likely to be small given the overall geographic and 
socioeconomic homogeneity of the district.

Our reliance on self-report for dietary data collection may have introduced some bias; however, the use of show-
cards with photos of local food items and typical serving sizes likely improved reporting accuracy and consistency. While 
the FFQ focused on describing consumption patterns of selected food groups, the primary limitation is that we cannot 

Table 6.  Comparison of observed prevalence of co-occurring anemia and micronutrient deficiency or inflammation with the prevalence 
expected by chance1. 

Co-occurring anemia3 and micro-
nutrient deficiency or inflammation

Women of reproductive age (n = 224) Children 2–5 years of age (n = 241)

Observed
co-occurrence, %

Expected
co-occurrence, %

P2 Observed
co-occurrence, %

Expected
co-occurrence, %

P2

Anemia + iron deficiency by SF4 18.9 13.8 0.002 25.2 20.2 0.006

Anemia + any iron deficiency5 22.6 17.2 0.001 33.1 28.3 0.001

Anemia + zinc deficiency6 27.4 24.6 0.06 20.1 23.3 0.06

Anemia + vitamin A deficiency7 1.0 0.3 0.028 11.0 9.5 0.40

Anemia + vitamin B-12 deficiency8 3.9 4.0 0.96 7.2 6.7 0.71

Anemia + folate deficiency9 4.8 3.7 0.20 – – –

Anemia + elevated AGP10 3.3 3.1 0.86 17.2 12.9 0.017

Anemia + elevated CRP11 5.2 3.1 0.023 4.9 6.0 0.43

Anemia + any inflammation (elevated 
AGP or CRP)12

5.7 4.4 0.34 17.8 13.7 0.042

Abbreviations: AGP, alpha-1-acid glycoprotein; CRP, high C-Reactive Protein; SF, serum ferritin.

1 Participants from different target groups could be recruited from the same household.

2 P-values compare the observed to the expected prevalences assuming that the null hypothesis (no association between the variables) was true, by 
Rao Scott chi-squared tests accounting for study design.

3 Anemia was defined as Hb < 120 g/L in women and Hb < 110 g/L in children.

4 Iron deficiency by ferritin was defined as SF < 15 µg/L in women and SF < 12 µg/L in children, after adjusting SF concentration for inflammation [49].

5 Any iron deficiency defined as SF < 15 µg/L and/or sTfR > 8.3 mg/L in women, and SF < 12 µg/L and/or serum soluble transferrin (sTfR) > 8.3 mg/L in 
children after adjusting SF concentration for inflammation [49].

6 Zinc deficiency was defined as serum zinc < 70 µg/dL when fasting or < 66 µg/dL when non-fasting in women, and serum zinc < 65 µg/dL in children. 
Zinc concentration was adjusted for inflammation (AGP and CRP) in children [47].

7 Vitamin A deficiency was defined as serum retinol < 0.70 µmol/L in WRA and children [52]. Retinol concentration was adjusted for inflammation (AGP 
and CRP) in children [47].

8 Vitamin B-12 was defined as serum vitamin B12 concentration < 221 pmol/L) in women and children.

9 Folate deficiency in women was defined as RBC folate < 305 nmol/L.

10 AGP concentration >1.0 g/L.

11 CRP concentration >5 mg/L.

12 AGP > 1.0 g/L or CRP > 5 mg/L.

https://doi.org/10.1371/journal.pone.0317647.t006

https://doi.org/10.1371/journal.pone.0317647.t006
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determine whether the associations observed with MNDs reflect underlying biological mechanisms or whether the dietary 
patterns serve as markers for other unmeasured factors.

We do not know of any recent or current anemia and MND prevalence data for the Tolon and Kumbungu districts with 
which to compare our results for the WRA and PSC, except for the anemia prevalence for the Northern Region (women: 
48.4%; PSC: 69.4%) from the 2022 Ghana DHS [11] and those for the “Northern Belt” (comprising the Northern, Upper 
East, and Upper West regions) from the 2017 GMS [12]. In the “Northern Belt”, the GMS reported 27.6% anemia, 21.5% 
iron deficiency (by low SF), and 15.4% IDA, as well as 4.1% vitamin A (RBP < 0.70 μmol/L), 13.5% vitamin B-12 (serum 
B12 < 150 pmol/L), and 50.8% folate (by serum folate <10 nmol/L) deficiency rates among WRA, and 53.2% anemia, 
39.6% iron deficiency (by low SF), 29.0% IDA, and 30.6% vitamin A (by RBP < 0.70 μmol/L) deficiency rates in PSC. 
Our results generally tracked well with those from the 2017 GMS, except for iron and folate deficiencies in the WRA and 
anemia and iron deficiency in PSC. Such differences may be expected, given differences in the survey samples and 
the sampling methodologies. While we did not statistically compare our estimates with those from the 2017 GMS due to 
obvious differences such as survey design and sampling frames, such descriptive comparisons still offer useful context for 
interpreting the prevalence patterns observed in our study. Possible explanations to the relatively low prevalence of vita-
min A deficiency among WRA compared with relatively high prevalence in PSC might include more diverse diets (including 
vitamin A-fortified cooking oil consumption) and lower prevalence of infection (as indicated by lower prevalence of ele-
vated AGP and/or CRP, Table 4) among WRA compared with PSC.

The high prevalence of anemia and MNDs among WRA and PSC in this study is consistent with data from other 
low- and middle-income countries [2, 3]. For instance, the anemia prevalence rates observed in our study (31% in WRA; 
36% in PSC) align with the global estimates of 30% among WRA and 40% among PSC [2]. These rates are relatively 
high compared with those reported for high-income countries, such as the United States, where anemia prevalence was 
estimated at 11.8% among WRA and 6.1% among PSC in 2019 [61], while the prevalence of MNDs, including folate (0%), 
iron (22%), zinc (14%) among WRA in 2022 [5] were considerably lower.

In Ghana, the high prevalence of anemia and MNDs may be attributed to various factors, including inadequate dietary 
intake [62], poor bioavailability of dietary iron [63], poor access to fortified foods or supplements [12], frequent infections 
[64], and malaria [65], along with increased requirements during childbearing years [66] or childhood [67]. We did not 
analyze water and food samples for micronutrients and heavy metals, as some of these metals, including calcium [68] and 
cadmium [69], could potentially influence iron absorption and anemia risk. Future studies may benefit from including these 
assessments.

The observed significant association between improved source of drinking water and lower odds of anemia, iron defi-
ciency, and vitamin A deficiency among WRA was expected. Access to improved drinking water is often linked to better 
health outcomes, as it reduces the incidence of waterborne diseases and infections that can cause blood loss and/or 
impair nutrient absorption, leading to anemia and MND [70, 71]. For instance, in an analysis of Demographic and Health 
Survey data of 10 eastern African countries [72], unimproved source of drinking water was associated with a higher preva-
lence ratio of anemia.

The significant associations between living in the Kumbungu district, higher food insecurity, and higher consumption of 
SSBs with higher odds iron and vitamin A deficiencies in WRA may be attributed to several factors, including differences in 
food access between districts, negative impact of food insecurity on dietary quality, and nutrient displacement from SSB. 
Food insecurity is known to limit dietary diversity and reduces intake of micronutrient-rich foods, leading to inadequate 
nutrient intake [73,74]. Households experiencing food insecurity often consume fewer animal-source foods and fresh pro-
duce, which are important for iron and folate supply [75,76]. High consumption of SSBs may be linked to lower intake of 
essential nutrients, as these beverages often provide calories with minimal nutritional value, reducing the consumption of 
more nutritious options [77]. It is possible there are other explanations for the observed associations [78,79]. Our findings 
call for food security interventions that improve both the availability and quality of food to prevent MNDs.
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Among PSC, several possible explanations may account for why rural residence was associated with lower odds 
of anemia and ID but higher odds of vitamin B-12 deficiency, while living in the Kumbungu district was linked to lower 
odds of zinc deficiency but higher odds of vitamin A deficiency. It is conceivable that rural residents may have greater 
access to fresh produce and traditional diets rich in iron, which may explain the lower odds of anemia and ID, while 
limited access to animal products, which are primary sources of vitamin B-12, might contribute to the higher odds 
of vitamin B-12 deficiency. However, our previous analysis [80] showed that the proportion of PSC who consumed 
fruits in a typical week was significantly greater in the urban areas (82%) than in the rural areas (68%), while vege-
table consumption was not associated with urban or rural residence. It is unclear how differences in dietary patterns 
between the two districts, including the consumption of foods rich in zinc, such as groundnut soup (4.2 mg Zn/100 g) 
and tuo-zaafi (4.0 mg Zn/100 g) [81], may have contributed to the lower odds of zinc deficiency, but higher odds of 
vitamin A deficiency in the Kumbungu district. The findings that higher HAZ and higher typical week’s servings of fruits 
consumed were associated with lower odds of anemia and vitamin A or vitamin B-12 deficiency may reflect better 
overall nutrition and health status. Higher fruit consumption might reflect a more diverse diet in general, contributing to 
reduced odds of anemia and MND.

The co-occurrence of anemia with MNDs, such as iron and vitamin A deficiency, observed among WRA and PSC is 
consistent with the evidence that MNDs often co-exist [14,82]. ID is a primary cause of anemia, but deficiencies in vitamin 
A, zinc, and folate can also contribute to anemia by impairing immune function, reducing nutrient absorption, and affect-
ing red blood cell production [83,84]. Additionally, the co-occurrence of anemia with elevated AGP or CRP, supports the 
“anemia of inflammation” hypothesis where inflammation disrupts iron metabolism and contributes to anemia [85]. These 
findings support the need for interventions that address multiple MNDs and inflammation to reduce anemia prevalence 
[86] in this setting.

Conclusions

We observed a high prevalence of various micronutrient deficiencies among WRA and PSC in the two districts despite the 
existence of micronutrient intervention programs in Ghana, including the mandatory fortification of edible oil with vitamin A 
and wheat flour with vitamin A, iron, zinc, folic acid, and vitamin B12 [87].

Our findings suggest that current national fortification programs targeting edible oil and wheat flour may not suffi-
ciently reach or impact all subpopulations, particularly in rural or underserved areas. While the use of multiple micro-
nutrient powder in home-fortification [88] might contribute to improving micronutrient intakes of PSC in this setting, its 
long-term sustainability remains uncertain [89]. Thus, national stakeholders should consider reviewing and potentially 
expanding the scope of existing fortification efforts. In particular, bouillon fortification has been proposed as a possi-
ble strategy to increase dietary micronutrient adequacy among individuals at risk of micronutrient deficiency [90,91]. 
Bouillon cubes are widely consumed in Ghana [92] and may serve as an effective additional vehicle for delivering key 
micronutrients and improving coverage. In our previous analysis [93], 99% of 369 surveyed households reported ever 
using bouillon in cooking, and 77% reported typically using it two or more times per day. Our data can guide which 
micronutrients are needed, and help identify the population groups that may benefit most. Based on the results of this 
study, an efficacy trial of the impact of multiple micronutrient-fortified bouillon on micronutrient status was implemented 
in these same study districts [16].

To reduce micronutrient deficiencies in this and similar settings, potential strategies may include introducing addi-
tional delivery vehicles, such as multiple micronutrient-fortified bouillon cubes. Given the observed associations between 
improved drinking water and reduced risk of anemia and micronutrient deficiencies, ensuring access to safe drinking water 
may provide additional benefits. Policymakers and program implementers should consider the potential benefits and costs 
of these multi-sectoral approaches when designing interventions.
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